速读谷 > 科幻灵异 > 走进不科学 > 第669章 震动的编辑部(万字更新求月票!)

第669章 震动的编辑部(万字更新求月票!)(8 / 13)

第一个条件对于全局变换也对,以后将看到第二个条件保证了变换定义的荷为0,这也是局域性的体现,即无穷远处的场不参与变换。整体变换总是改变无穷远处的场,因此它对应的荷不为0】

【局域对称性δ^∈wtf。这里记δ^∈tf,是一个切矢量场,可以定义切矢量场的李括号[δ^1,δ^2]∈w,因此局域对称性构成封闭的李代数g。由frobenius定理,所有局域对称性所张成的w可积,可以定义积分子流形】

如果此时徐云在场并且看到了这段内容,他估计会很感慨的拍一拍古兹密特的肩膀,说一声老哥俺理解你。

毕竟

当初在看到这段推导的时候,徐云的下巴也差点被惊到了地下。

没错。

这段推导并不是初版论文的内容,而是赵忠尧等人补充的新成果:

当初的初版内容主要基于串列式加速器的首次启动数据,大概还有20%左右是需要后续实验填充的。

不久前。

在组织上批复了一批电能后,赵忠尧等人又进行了数次撞击实验。

而就在某次撞击实验中,他们发现了一个全新的现象。

也就是.

u(1)局域对称性。

后世的粒子物理有一个铁律,叫做所有的费米子都必须满足u(1)的局域对称性。

具体来说就是:

费米子对应的旋量场在进行以下的变换后,拉格朗日密度的形式不变。

ψ(x)→eiα(x)ψ(x)这里的变换包含α(x)这个有关坐标的函数,所以不同点的变换规则不同,称为“局域对称性“。

但问题是在眼下这个时代,费米子的局域对称性存在一个问题。

因为它的的原始拉格朗日量为 l=ψ(iγμμm)ψ,看这个表达式就很容易发现这个拉格朗日量在u(1)的变换下并不是守恒的。

其原因就在于像广义相对论这种一样一个协变量的导数,其实并不是协变的。

赵忠尧等人则在对撞中发现一颗电子在某种特殊的偏转角后,出现了一个很奇怪的量化性轨迹。

这个轨迹在数学上的表达式就是dμ=μ+ieaμ l=ψ(iγμdμm)ψ aμ,也就是在庞加莱群的变换下出现了一个矢量场。

而这个场

恰好能够修补导数的协变性。

这其实是个在十三年后才会

最新小说: 天塌了,我带着小区穿越了! 末世,从吞尸体开始进化 黑暗王者 希泊尼战纪 天启之夜 请叫我馆主大人 暗墟黎明 还能保送怪物职业学院? 神明模拟器 从武道世界开始击穿深渊